If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3q^2-8q=0
a = 3; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·3·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*3}=\frac{0}{6} =0 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*3}=\frac{16}{6} =2+2/3 $
| 7w^2-8w+1=0 | | y-12y=3 | | 16.6+5d=3d-12.8 | | 9z^2+8z-7=0 | | (4q-5)°=39° | | z+(-5)z=9 | | 14.6-7c=12.5-4.9c | | 2s^2+6s+9=0 | | 4d+5.7=2d-0.3 | | 6r^2+9r-3=0 | | 10n+6.5=5.5+8n | | (3x+32)+x+(4x+46)=180 | | (3x+32)+(x)+(4x+46)=180 | | 4-3.8d=0.5d-0.3 | | r+r+r=3r | | 12.2d-8=10.2d-12 | | 9d+5.2=6d-0.8 | | 2x-8=9x+27 | | 2x-8+39=180 | | 4x+8.3=x-1 | | 55,000=10,000(1.06)^7x | | x^2+8x+45=−6x | | 3n=n=5 | | (x)+(4x+23)+(5x+17)=180 | | -1.28=(x-13.1)/(1.014185) | | 5/4+1/5=x | | 2(x)+2(x/2-2)=56 | | 16/17-14/17=x | | (2x+33)+(4x-21)+(90)=180 | | 65=5-3k | | 216=r*4.3 | | (2x)+(5x-8)+(90)=180 |